
VerilogVerilog IntroductionsIntroductions

Overview of Verilog – an HDL
(Hardware Description Language)(Hardware Description Language)

Verilog is a hardware description language (HDL)Verilog is a hardware description language (HDL)
Verilog is used by several companies in the commercial chip
design and manufacturing sector today. It is rapidly overtaking
the rival HDL called VHDLthe rival HDL called VHDL
Verilog allows a designer to develop a complex hardware
system, e.g., a VLSI chip containing millions of transistors, by
defining it at various levels of abstractiondefining it at various levels of abstraction

at the (highest) behavioral, or algorithmic, level the design consists
of C-like procedures that express functionality without regard to
implementationp e e tat o
at the dataflow level the design consist of specifying how data is
processed and moved between registers
at the gate level the structure is defined as an interconnection of ra

l g
logic gates
at the (lowest) switch level the structure is an interconnection of
transistors

St
ru

ct
ur

Le
ve

l

Verilog

Verilog allows the designer to simulate and verify the design atVerilog allows the designer to simulate and verify the design at
each level
EDA (electronic design automation) tools help the designer to
move from higher to lower levels of abstractionmove from higher to lower levels of abstraction

Behavioral synthesis tools create dataflow descriptions from a
behavioral description
Logic synthesis tools convert an RTL description to a switch levelLogic synthesis tools convert an RTL description to a switch level
interconnection of transistors, which is input to an automatic place
and route tool that creates the chip layout

With Verilog and EDA tools one could sit at a computer at home, g p ,
design a complex chip, email the design to a silicon foundry in
California, and receive the fabricated chip through regular mail
in a few weeks!
The Verilog environment is that of a programming language.
Designers, particularly with C programming experience, find it
easy to learn and work withy

Verilog Resources

1. “Verilog HDL”, by Palnitkar (department library)
2. “Verilog Digital Computer Design: Algorithms to Hardware”,

by Arnold (department library)by Arnold (department library)
3. John Sanguinetti's Verilog Tutorial:

http://www.vol.webnexus.com/
4. Gerard Blair's Verilog Tutorial:

http://www.see.ed.ac.uk/~gerard/Teach/Verilog/index.html
5 ALDEC's Verilog Tutorial:5. ALDEC s Verilog Tutorial:

http://www.aldec.com
6. DOULOS's Verilog Tutorial:

http://www.doulos.com
7. Other on-line resources

Cl b i8. Class website

CAD Tool Flow (참고자료)CAD Tool Flow (참고자료)

Design decision Trade Off (참고자료)

Generalized Design Flow (참고자료)

RTL Synthesis Flow (참고자료)

Learning Verilog

Verilog is essentially a programming language – similar to C with
some Pascal-like constructs
The best way to learn any programming language is from live
code
We will get you started by going through several example
programs and explaining the key concepts
We will not try to teach you the syntax line-by-line: pick up whatWe will not try to teach you the syntax line by line: pick up what
you need from the books and on-line tutorials
Tip: Start by copying existing programs and modifying them
incrementally making sure you understand the output behavior atincrementally making sure you understand the output behavior at
each step
Tip: The best way to understand and remember a construct or
keyword is to experiment with it in code not by reading about itkeyword is to experiment with it in code, not by reading about it
We shall not design at the switch (transistor) level in this course –
the lowest level we shall reach is the gate level. The transistor
level is more appropriate for an electronics oriented courselevel is more appropriate for an electronics-oriented course

Example Code

The example code that follows is mostly from the two on-
line tutorials or Palnitkar’s book or written in-house. See the

d i h E l di f h hisource code in the Examples directory for authorship
information
The transparency title shows the source file name and (in
parentheses) if it is in a sub-directory of Examples
Comments in the original source have often been deleted in
the transparency and replaced with text-box annotationp y p

helloWorld.v
A procedural programming language provides a programmer a means to
define precisely each step in the performance of a task. The programmer knows
what is to be accomplished and provides through the language step-by-step
instructions on how the task is to be done. Using a procedural language, the
programmer specifies language statements to perform a sequence of algorithmic
steps. Procedural programming is often a better choice than simple sequential or

module helloWorld ; Modules are the unit building-blocks

p p g g p q
unstructured

;
initial
begin

$display ("Hello World!!!");

(components) Verilog uses to describe
an entire hardware system. Modules are
(for us) of three types: behavioral, dataflow,
gate-level. We ignore the switch-level in$display (Hello World!!!);

$finish;
end

endmodule

gate level. We ignore the switch level in
this course.

This module is behavioral. Behavioral
d l i d i d l bl kendmodule modules contain code in procedural blocks.System calls.

This is a procedural block.
There are two types of procedural
blocks: initial and always.

More than one statement must be
put in a begin-end group.

blocksTime1.v

module blocksTime1;
integer i, j;

Another behavioral module.

Integer data type: other types are
initial

begin
i = 0;

time, real and realtime (same as real).

j = 3;
$display("i = %d, j = %d", i, j);
$finish;

One initial procedural block.

$;
end

endmodule

blocksTime1.v – Simulation Result

blocksTime2.v

d l bl k i 2module blocksTime2;
integer i, j;

initialinitial
begin
#2 i = 0;
#5 j = i;

Time delay models signal propagation
delay in a circuit.

#5 j = i;
$display("time = %d, i = %d, j = %d", $time, i, j);
end

initial
#3 i = 2;

Multiple initial blocks.
Delays add within each block,
but different initial blocks all start

initial
#10 $finish;

endmodule

at time $time = 0 and run
in parallel (i.e., concurrently).

blocksTime2.v – Simulation Result

d l bl k i 2module blocksTime2;
integer i, j;

initialinitial
begin
#2 i = 0;
#5 j = i;

Time delay models signal propagation
delay in a circuit.

#5 j = i;
$display("time = %d, i = %d, j = %d", $time, i, j);
end

initial
#3 i = 2;

Multiple initial blocks.
Delays add within each block,
but different initial blocks all start

initial
#10 $finish;

endmodule

at time $time = 0 and run
in parallel (i.e., concurrently).

blocksTime3.v
module blocksTime3;

integer i, j;

initial
begin
#2 i = 0;

Important Verilog is a discrete event simulator:
events are executed in a time-ordered queue.

#5 j = i;
$display("time = %d, i = %d, j = %d", $time, i, j);
end

q

initial
begin
#3 i = 2;

2#2 j = i;
$display("time = %d, i = %d, j = %d", $time, i, j);
#1 j = 8;
$display("time = %d, i = %d, j = %d", $time, i, j);

Multiple initial blocks.
Predict output before
you run!$display(time %d, i %d, j %d , $time, i, j);

end

initial
#10 $fi i h

you run!

#10 $finish;
endmodule

blocksTime3.v – Simulation Result

blocksTime4.v

module blocksTime4;
integer i, j;g , j;

initial
begin

Always block is an infinite loop. Following are same:

i = 0;
j = 3;
end

always initial initial
begin begin begin
… while(1) forever

initial
#10 $finish;

end begin begin
… …

end end
end end

always
begin
#1

end end

C t t thi d l#1
i = i + 1;
j = j + 1;
$display("i = %d, j = %d", i, j);

Comment out this delay.
Run. Explain the problem!

$display(i %d, j %d , i, j);
end

endmodule

blocksTime4.v

clockGenerator.v

Port list Ports can be of three types: input

module clockGenerator(clk);
output clk; Internal register

Port list. Ports can be of three types: input,
output, inout. Each must be declared.

p ;
reg clk;

initial

Internal register.

Register reg data type can have one of
four values: 0, 1, x, z. Registers store ainitial

begin
clk = 0;
end

value till the next assignment. Registers
are assigned values in procedural blocks.

end

always
#5 clk = ~clk;

If this module is run stand-alone make
sure to add a $finish statement here or
simulation will never complete!

#5 clk = ~clk;
endmodule

The delay is half the clock period.

useClock.v

Compile with the clockGenerator v module
module useClock(clk);

input clk;
clockGenerator cg(clk);

Compile with the clockGenerator.v module.

clockGenerator cg(clk);

initial
#50 $finish;#50 $finish;

always @(posedge cg.clk) // Bug!! Should work with "clk" only instead of
// "cg.clk“ - Version 9 of Verilogger Pro fixes the bug

$display("Time = %d, Clock up!", $time);

always @(negedge cg.clk) //
$display("Time = %d, Clock down!", $time);

endmodule

systemCalls.v

module systemCalls(clk);
input clk;p ;
clockGenerator cg(clk);

initial

Compile with the clockGenerator.v module.

begin
#25 $stop;
#50 $finish;

Suspends simulation – enters interactive mode.

end

initial
begin

Terminates simulation.

begin
$write("$write does not ");
$write("add a new line₩n");

Similar output calls except
$display adds a new line.

$display("$display does");
$display("add a new line");

$monitor produces output
h i i bl h

$monitor("Clock = %d", cg.clk); end
endmodule

each time a variable changes
value.

blocksTime5.v

// Ordering processes without advancing time
module blockTime5;

integer i, j;
#0 delay causes the statement to
execute after other processes
scheduled at that time instant have

l t d $ti d t dinitial
#0
$display("time = %d, i = %d, j = %d", $time, i, j);

completed. $time does not advance
till after the statement completes.

initial
begin
i = 0; Comment out the delay.i = 0;
j = 5;
end

Comment out the delay.
Run. Explain what happens!

initial
#10 $finish;

endmodule

blocksTime6.v

module blocksTime6;
integer i, j;

initial Intra-assignment delay: RHS is computed and
begin
#2 i = 0;
j = #5 i;
$di l ("ti %d i %d j %d" $ti i j)

stored in a temporary (transparent to user) and
LHS is assigned the temporary after the delay.

$display("time = %d, i = %d, j = %d", $time, i, j);
end

initial Compare output with blocksTime2.v.initial
#3 i = 2;

initial

Compare output with blocksTime2.v.

initial
#10 $finish;

endmodule

blocksTime6.v – Simulation Result

numbers.v

module numbers;
integer i, j;
reg[3:0] x, y;

Register array.
g[] , y;

initial
begin
i = ‘b1101;

‘<base>: base can be d, b, o, h Array of register arrays simulate
memory. Example memory
declaration with 1K 32-bit words:i b1101;

$display("decimal i = %d, binary i = %b", i, i);
$display("octal i = %o, hex i = %h", i, i);

j = 1;
Default base: d

reg[31:0] smallMem[0:1023];

j = -1;
$display("decimal j = %d, binary j = %b", j, j);
$display("octal j = %o, hex j = %h", j, j);

4'b1011

Negative numbers are stored
in two’s complement form.

x = 4'b1011;
$display("decimal x = %d, binary x = %b", x, x);
$display("octal x = %o, hex x = %h", x, x);

y = 4'd7;
$display("decimal y = %d, binary y = %b", y, y);
$display("octal y = %o, hex y = %h", y, y);

$finish;
end

endmodule

Typical format: <size>’<base><number>
size is a decimal value that specifies the
size of the number in bits.

numbers.v – Simulation Result

simpleBehavioral.v

Sensitivity trigger: when any of a, b or c changes.
Replace this statement with “initial”. Output?!

module aOrNotbOrc(d, a, b, c);

Modules are of three types: behavioral,
dataflow, gate-level. Behavioral

d l i d i d l bl kmodule aOrNotbOrc(d, a, b, c);
output d;
input a, b, c;
reg d p;

modules contain code in procedural blocks.

Statements in a procedural block cannot be
re-ordered without affecting the program asreg d, p;

always @(a or b or c)
begin

re ordered without affecting the program as
these statements are executed sequentially,
exactly like in a conventional programming
language such as C.

begin
p = a || ~b;
d = p || c;
end

Ports are of three types: input, output, inout.
Each must be declared. Each port also has a
data type: either reg or wire (net). Default is wire.end

endmodule

data type: either reg or wire (net). Default is wire.
Inputs and inouts are always wire. Output ports
that hold their value are reg, otherwise wire.
More later…

O t i t i t l i tOne port register, one internal register.
Wires are part of the more general class of nets.
However, the only nets we shall design with are wires.

simpleBehavioral.v (cont.)
Top-level stimulus moduleTop-level stimulus module
module stimulus;

i t i j kinteger i, j, k;
reg a, b, c;
aOrNotbOrc X(d, a, b, c);

Verilog Good Design Principle There is one
top-level module, typically called system or
stimulus, which is uninstantiated and has no

Thi d l i i i i f
initial

begin
for (i=0; i<=1; i=i+1)

ports. This module contains instantiations of
lower-level (inner) sub-modules. Typical
picture below.

Instantiation.

for (i 0; i< 1; i i+1)
for (j=0; j<=1; j=j+1)

for (k=0; k<=1; k=k+1)
begin

Top-level module

Inner
b d l

g
a = i;
b = j;
c = k;

sub-modules

#1 $display("a = %d b = %d, c = %d, d = %d", a, b, c, d)
end

$finish;
d

Remove the #1 delay. Run. Explain!
end

endmodule

Port Rules Diagram

Outside connectors
to internal ports, i.e.,

wire
EXTERNAL
MODULE

p , ,
variables corresponding
to ports in instantiation
of internal module

E l

inoutwire

wireExample:
module external
reg a;
wire b;

input output

Internal ports

;
internal in(a, b); //instantiation
…
endmodule

nn
ec

to
r

reg or wire

p
wirereg or wire wireINTERNAL

MODULE

module internal(x, y)
input x;
output y;

po
rt-

co
n

p y;
wire x;
reg y;
…
e d d leendmodule General rule (with few exceptions) Ports in all modules except for the

stimulus module should be wire. Stimulus module has registers to set data
for internal modules and wire ports only to read data from internal modules.

simpleDataflow.v

module aOrNotbOrc(d a b c);module aOrNotbOrc(d, a, b, c);
output d;
input a, b, c;
wire p q;

A dataflow module does not contain procedures.

Statements in a dataflow module can be re-ordered
without affecting the program as they simplywire p, q;

assign q = ~b;
assign p a || q;

without affecting the program as they simply
describe a set of data manipulations and
movements rather than a sequence of actions as
in behavioral code. In this regard dataflow code is

assign p = a || q;
assign d = p || c;

endmodule

very similar to gate-level code.

Continuous assignment statements: any change in
the RHS causes instantaneous update of the wire
on the LHS, unless there is a programmed delay., p g y

Use stimulus module from behavioral code.

simpleGate.v

A gate-level module does not contain procedures.

module aOrNotbOrc(d, a, b, c);
output d;
i t b

g p

Statements in a gate-level module can be re-ordered
without affecting the program as they simply
de ibe t f ti the thinput a, b, c;

wire p, q;

t(b)

describe a set of connections rather than a sequence
of actions as in behavioral code. A gate-levelmodule
is equivalent to a combinational circuit.

not(q, b);
or(p, a, q);
or(d, p, c);

Wire data type can have one of four values: 0, 1, x, z.
Wires cannot store values – they are continuously
driven.

endmodule

Primitive gates. Verilog providesg g p
several such, e.g., and, or, nand,
nor, not, buf, etc.

Use stimulus module from behavioral code.

4valuedLogic.v

module fourValues(a , b, c, d);
b doutput a, b, c, d ;

assign a = 1;
assign b 0;

Conflict or race
condition.
Remember this is

assign b = 0;
assign c = a;
assign c = b;

endmodule
4-valued logic:
0 – low

not a procedural
(i.e., sequential)
block! These are
continuous assign-endmodule

module stimulus;
fourValues X(a, b, c, d);

0 low
1 – high
x – unknown
z – undriven wire

continuous assign
ments.

(, , ,);

initial
begin

Now explain output!

#1 $display("a = %d b = %d, c = %d, d = %d", a, b, c, d);
$finish;
end

d d lendmodule

blockingVSnba1.v

module blockingVSnba1;
integer i, j, k, l;

initial
begin Blocking (procedural) assignment: the whole statementbegin
#1 i = 3;
#1 i = i + 1;
j = i +1;

Blocking (procedural) assignment: the whole statement
must execute before control is released, as in traditional
programming languages.

j = i +1;
#1 $display("i = %d, j = %d", i, j);

#1 i = 3;
Non-blocking (procedural) assignment: all the RHSs for the
current time instant are evaluated (and stored transparently#1 i 3;

#1 i <= i + 1;
j <= i + 1;
#1 $display("i = %d, j = %d", i, j);

current time instant are evaluated (and stored transparently
in temporaries) first and, subsequently, the LHSs are updated
at the end of the time instant.

$finish;
end

endmodule

blockingVSnba2.v

module blockingVSnba2(clk);
i lkinput clk;
clockGenerator cg(clk);
integer i, j;

Compile with clockGenerator.v.

An application of non-blocking assignments
to solve a race problem

initial
begin
i = 10;

to solve a race problem.

i = 10;
#50 $finish;
end

With blocking assignments we get different output
depending on the order these two statements are
executed by the simulator, though they are both

d t t “ i lt l ” t d lk
always @(posedge clk)

i = i + 1; // i <= i + 1;
always @(posedge clk)

supposed to execute “simultaneously” at posedge clk
- race problem.

Race problem is solved if the non-blocking
j = i; // j <= i;

always @(negedge clk)
$d l (" d d")

p g
assignments (after the comments) are used instead
- output is unique.

$display("i = %d, j = %d", i, j);
endmodule

blockingVSnba2.v – Simulation Result

blockingVSnba2.v – Simulation Result

i 10 j x
begin

i 10; # i = 10, j = x
i = 11, j = 11
i = 12, j = 12

i = 10;
#50 $finish;
end

i 12, j 12
i = 13, j = 13
i = 14, j = 14

always @(posedge clk)
i = i + 1;

always @(posedge clk)

a 10 b x

always @(posedge clk)
j = i;

begin # a = 10, b = x
a = 11, b = 10
a = 12, b = 11

begin
a = 10;
#50 $finish;
end # a 12, b 11

a = 13, b = 12
a = 14, b = 13

always @(posedge clk)
a <= a+ 1;

always @(posedge clk)
b <= a;

blockingVSnba3.vg

module blockingVSnba3;
The most important application of
non blocking assignments is tog ;

reg[7:0] dataBuf, dataCache, instrBuf, instrCache;

initial

non-blocking assignments is to
model concurrency in hardware
systems at the behavioral level.

begin
dataCache = 8'b11010011;
instrCache = 8'b10010010;

Both loads from dataCache to dataBuf and
instrCache to instrBuf happen concurrently
in the 20 21 clock cycle

#20;
$display("Time = %d, dataBuf = %b, instrBuf = %b", $time, dataBuf, instrBuf);
dataBuf <= #1 dataCache;

in the 20-21 clock cycle.

dataBuf <= #1 dataCache;
instrBuf <= #1 instrCache;
#1 $display("Time = %d, dataBuf = %b, instrBuf = %b", $time, dataBuf, instrBuf);

$finish;
end

endmodule

Replace non-blocking with blocking
assignments and observe.

blockingVSnba3.v – Simulation Resultg

Bl knonBlock

Block

