Verilog Introductions

L S

Overview of Verilog — an HDL
(Hardware Description Language)

= Verilog is a hardware description language (HDL)

s Verilog is used by several companies in the commercial chip
design and manufacturing sector today. 1t is rapidly overtaking
the rival HDL called VHDL

= Verilog allows a designer to develop a complex hardware
system, e.g., a VLSI chip containing millions of transistors, by

5 defining it at various levels of abstraction

= _ (= atthe (highest) behavioral, or algorithmic, level the design consists

ol of C-like procedures that express functionality without regard to

5Z | implementation

B0 2 = at the dataflow level the design consist of specifying how data is

S processed and moved between reqisters

T (= at the gate level the structure is defined as an interconnection of

= ;

5 = logic gates | | | |

= = at the (lowest) switch /eve/ the structure is an interconnection of
\ transistors

Verilog

= Verilog allows the designer to simulate and verify the design at
each level

= EDA (electronic design automation) tools help the designer to
move from higher to lower levels of abstraction

s Behavioral synthesis tools create dataflow descriptions from a
behavioral description

= Logic synthesis tools convert an RTL description to a switch level
interconnection of transistors, which is input to an automatic place
and route tool that creates the chip layout

= With Verilog and EDA tools one could sit at a computer at home,
design a complex chip, email the design to a s/licon foundry in
California, and receive the fabricated chip through regular mail
in a few weeks!

= The Verilog environment is that of a programming language.
Designers, particularly with C programming experience, find it
easy to learn and work with

Verilog Resources

=

“Verilog HDL”, by Palnitkar (department library)

“Verilog Digital Computer Design: Algorithms to Hardware”,
by Arnold (department library)

John Sanguinetti's Verilog Tutorial:
http://www.vol.webnexus.com/

Gerard Blair's Verilog Tutorial:
http://www.see.ed.ac.uk/—gerard/Teach/Verilog/index.html

ALDEC's Verilog Tutorial:
http://www.aldec.com
DOULOS's Verilog Tutorial:

http://www.doulos.com
Other on-line resources
Class website

!'_ CAD Tool Flow (&1 XI&)

Design decision Trade Off (& 1A=

I

Off the shelf
microprocessor
or DSP chip

Gate Array
=] or Standard
Cell Chip

SGo surfing—
wait for new
technology

Go caving—
wait for new
technology

Go farming—
weait for new
technoiogy

FEEEEFH Design decision tradeoffs == A,

} Generalized Design Flow (21 AI&)

P resciancs
R eqgeaire=rmsemh
Fromt IEncd =

B e s P i sl _.-"..-
SpemcilcaEbcar -.-__.l"

w

Basbhomw il FUTIL)
L= Y S S

* (o= 1= w8 -1 4

-'___,..-" SArestursd -
S s CE a1 e _._.-"

e .

o o, —
v

‘l_‘.—"‘-’r :sp-F;::mnEu-:-n _F_.-"'.-.'I -

Hack Erwd i-

{:T-:- CERACES Fak :]

EEEEETY - rer=liced cdes 1= o

RTL Synthesis Flow (

=t

()

— Cm———— T R TR AT RLEPEEE L R Rl R L L

v

WALS)

—-l Linrary Mapping

/

Y
Matist /
Y

SimLilation or

| Foermal Verificabion

i
g dabug

Floarplan and
Library Deta

—a-| Timing Aralysis [

DK

¥

Fedlitat 6T BRIEIJUE COFSLLLLT ¥ E LA L LADEE

| Y

IT:I:I: Legic Insartion

.
/-
Y

Simulation or
Formial Verification

FIG 8.3% Eaus synthesis fow

Learning Verilog

Verilog is essentially a programming language — similar to C with
some Pascal-like constructs

The best way to learn any programming language Is from live
code

We will get you started by going through several example
programs and explaining the key concepts

We will not try to teach you the syntax line-by-line. pick up what
you need from the books and on-line tutorials

71p: Start by copying existing programs and modifying them
iIncrementally making sure you understand the output behavior at
each step

7ip: The best way to understand and remember a construct or
keyword is to experiment with it in code, not by reading about it

We shall not design at the switch (transistor) level in this course —
the lowest level we shall reach is the gate level. The transistor
level is more appropriate for an electronics-oriented course

Example Code

The example code that follows is mostly from the two on-
line tutorials or Palnitkar’'s book or written in-house. See the
source code in the Examples directory for authorship
information

The transparency title shows the source file name and (in
parentheses) if it is in a sub-directory of Examples

Comments in the original source have often been deleted in
the transparency and replaced with text-box annotation

helloWorld.v

—

A procedural programming language provides a programmer a means to
define precisely each step in the performance of a task. The programmer knows
what is to be accomplished and provides through the language step-by-step
instructions on how the task is to be done. Using a procedural language, the
programmer specifies language statements to perform a sequence of algorithmic
steps. Procedural programming is often a better choice than simple sequential or
unstructured

Modules are the unit building-blocks

module helloWorld ;
initial
begin
$display ("Hello World!!!");
$finish;

end \

endmodule
System calls.

'\

(components) Verilog uses to describe

an entire hardware system. Modules are
(for us) of three types: behavioral, dataflow,
gate-level. We ignore the switch-level in

> this course.

This module is behavioral. Behavioral
modules contain code in procedural blocks.

This is a procedural block.
There are two types of procedural
blocks: initial and always.

More than one statement must be
put in a begin-end group.

blocksTimel.v

module blocksTimel; * | Another behavioral module.
integer i, j;

\ Integer data type: other types are

time, real and realtime (same as real).

initial
begin
I = 0;

j=3; «— | Oneinitial procedural block.

$display("i = %d, j = %d", i, j);
$finish;
end

endmodule

i blocksTimel.v — Simulation Result

blocksTime2.v

module blocksTime2;

integer i, J;

initial _ Time delay models signal propagation
beg‘l/ delay in a circuit.
#21=0;
#5) =1i;

$display("time = %d, i = %d, j = %d", $time, i, |);

end .\
initial Multiple initial blocks.

#3i=2; - Delays add within each block,
but different initial blocks all start
at time $time = 0 and run

initial / _ \
in parallel (i.e., concurrently).

#10 $finish;

endmodule

blocksTime2.v — Simulation Result

m wave - default
File Edit View &dd Format Tools Window

Curzor 1

a N
| Ons to 86 ns | Now: 100 ns Delta: 2

] =4 Tranzcript |

blocksTime3.v

module blocksTime3;

integer i, j;
initial
beg_ln Important Verilog is a discrete event simulator
zé | = 0 events are executed in a time-ordered queue.
J=1
$display("time = %d, i = %d, j = %d", $time, i, |);
end
initial
begin
#3 1= 2;
H2) =1 -
$display(“time = %d, i = %d, j = %d", $time, i, j); Multiple initial blocks.
#l]=8; _ _ ~_+— Predict output before
$display("time = %d, i = %d, j = %d", $time, i, j); you run!
end
initial
#10 $finish;

endmodule

blocksTime3.v — Simulation Result

[T wave — default
File Edit Yiew &dd Format Tools Window

Maw 100ns |

Curzor 1 3 he

- :
| Onsto 22 ns | Now: 100 ns Delta: 2

Tranzcript

F- Transcript

\Project: testFilersad [Now: 100 ns Delta: 2 | sim:/th_RGEZHSY

blocksTime4.v

module blocksTime4;

integer 1, j;
initial : N :
: Always block is an infinite loop. Following are same:

begin

= always initial initial

] =3; begin begin begin

end while(1) forever

end begin begin

initial

#10 $finish; end end

end end

always

begin

#1 « Comment out this delay.

=1+ 1; Run. Explain the problem!

1=+ 1

$display("i = %d, j = %d", i, j):

end

endmodule

blocksTime4.v

m wave — default
=8 Edit “iew Add Format Tools Window

Mow

Curzar 1

K o 5 |

|OnstoBns | Now: 100ns Delta: 2

I =] Transcript ‘

clockGenerator.v

Port list. Ports can be of three types: input,
/ output, inout. Each must be declared.

module clockGenerator(clk);
output clk; Internal register.

reg cIk;\
Register reg data type can have one of

four values: 0, 1, X, z. Registers store a

initial _ . :
bedi value till the next assignment. Registers
egin are assigned values in procedural blocks.
clk = 0;

end } i
o \ If this module is run stand-alone make

sure to add a $finish statement here or
always simulation will never complete!

#5 clk = ~clk;

endmoM - -
The delay is half the clock period.

useClock.v

«— | Compile with the clockGenerator.v module.
module useClock(clk);
input clk;
clockGenerator cg(clk);

initial
#50 $finish;

always @(posedge cg.clk) // Bug!! Should work with "clk" only instead of
/1 "cg.clk* - Version 9 of Verilogger Pro fixes the bug
$display("Time = %d, Clock up!", $time);

always @(negedge cg.clk) //
$display("Time = %d, Clock down!", $time);
endmodule

systemcCalls.v

module systemCalls(clk);

input clk; '\

clockGenerator cg(clk); —
Compile with the clockGenerator.v module.

initial

begin : : : :
Suspends simulation — enters interactive mode.
#25 $stop; < | P

#50 $finish;
end \ : : :
Terminates simulation.

initial

DEQIN Similar output calls except

$write("add a new line¥n");

$display("$display does™);

display(*add line"); i
$display("add a new line") $monitor produces output

each time a variable changes
value.

$monitor("Clock = %d", cg.clk); erfd— |

endmodule

blocksTime5.v

/1 Ordering processes without advancing time

module blockTime5; #0 delay causes the statement to
integer i, j; execute after other processes
scheduled at that time instant have
initial / completed. $time does not advance
0 till after the statement completes.

$disp

("time = %d’ | = %d, J = %d", $time, i, J),

initial
begin

1 =0; Comment out the delay.
j =5; Run. Explain what happens!

end

initial
#10 $finish;
endmodule

blocksTime6.v

module blocksTime6;
integer i, j;

initial Intra-assignment delay: RHS is computed and

begin stored in a temporary (transparent to user) and
H#2 | io/ LHS is assigned the temporary after the delay.

] =#51;
$display("time = %d, i = %d, j = %d", $time, i, j);

ene \
e Compare output with blocksTime2.v.

llllll

#31=2;
initial
#10 $finish;

endmodule

i blocksTime6.v — Simulation Result

v Edit Mew Add Format Tools Window
JGHEI S RBLY HES | SHAM | 4es B iU BT Y|| A AT |\ B2

4 Mt RGB2HSV/ck (D
".,'l .'!H:' FI a

=

4 b RGB2HSYY

numbers.v

module numbers;
integer i, j; - Register array.
reg[3:0] x, y;

initial ‘<base>: base canbed, b, 0, h
begin/
i = ‘b1101;

$display("decimal i = %d, binary i = %b", i, i);
$display("octal i = %0, hex i = %h", i, i);

Default base: d
j=

$display("decimal j = %d, binary j = %b", j, j);
$display("octal j = %0, hex j = %h", |, |);

X = 4'p1011;

$display(\decimal x = %d, binary x = %b", x, X);

$display("ogtal x = %0, hex x = %h", X, X);

y = 4'd7;

$display(decimal 'y = %d, binary y = %b", y, vy);
$display("oc = 980, hex y = %h", y, y);

Array of register arrays simulate
memory. Example memory
declaration with 1K 32-bit words:
reg[31:0] smallMem[0:1023];

Negative numbers are stored
in two’s complement form.

$finish; Typical format: <size>’<base><number>
end size is a decimal value that specifies the

endmodule size of the number in bits.

numbers.v — Simulation Result

[T wave — default
File Edit “iew Add Format Tools Window

R [o0ne 3| (2

r:'l o B 0 I:l n z

Curzor 1 0 nz

it o

|Onsto 10ns | Now: 100 ns Delta: 2

E) Transcript

Iroject : testFileread [Now: 100 ns Delta: 2 |sim:/th_RGEZHSY

simpleBehavioral.v

Sensitivity trigger: when any of a, b or ¢ changes.
Replace this statement with “initial”. Output?!

module aOrNotbOrc(d, a, b, c);
output d;
input a, b, c;
reg d, p;

endmodule

One port register, one internal register.

- Modules are of three types: behavioral,

dataflow, gate-level. Behavioral
modules contain code in procedural blocks.

Statements in a procedural block cannot be
re-ordered without affecting the program as
these statements are executed sequentially,
exactly like in a conventional programming
language such as C.

Ports are of three types: input, output, inout.
Each must be declared. Each port also has a

data type: either reg or wire (net). Default is wire.
Inputs and inouts are always wire. Output ports
that hold their value are reg, otherwise wire.
More later...

Wires are part of the more general class of nets.
However, the only nets we shall design with are wires.

simpleBehavioral.v (cont.)
Top-level stimulus module

module stimulus;

mtegerbl, J: K; Verilog Good Design Principle There is one
rega, b, C, top-level module, typically called system or
aOrNotbOrc X(d, a, b, ¢);

stimulus, which is uninstantiated and has no

\ — ports. This module contains instantiations of
initial Instantiation. lower-level (inner) sub-modules. Typical
begin picture below.
for (i=0; i<=1; i=i+1)
for (j=0; j<=1; j=j+1) Top-level module
for (k=0; k<=1; k=k+1) S—
begin < \: Inner
a=i | — sub-modules
: —
b=j;
c =k;
#1 $display("a = %d b = %d, ¢ = %d, d = %d", a, b, c, d)
end
$finish; Remove the #1 delay. Run. Explain!

end
endmodule

Port Rules Diagram

Outside connectors
__.- tointernal ports, i.e.,
_---=""" variables corresponding
_ to ports in instantiation

EXTERNAL -~ -="" of internal module
MODULE .-~ ire| < .
Example: wweI |
module external
req a; wireI inout !
wire b; 4
internal in(a, b); //instantiation !
g i Internal ports :
O ' a7 Ttea !
endmodule v i :
= | 1nput output v
o . o . » >
; module internal(X, y) reg or wire | wire INTERNAL 'egorwire | wire
Q input X;
— MODULE
output y;
wire X;
regy,
endmodule General rule (with few exceptions) Ports in all modules except for the

stimulus module should be wire. Stimulus module has registers to set data
for internal modules and wire ports only to read data from internal modules.

simpleDataflow.v

module aOrNotbOre(d, a, b, c); A dataflow module does not contain procedures.
output d;
input a, b, c; Statements in a dataflow module can be re-ordered
wire p, d; +——— without affecting the program as they simply

describe a set of data manipulations and
ian a = —b- movements rather than a sequence of actions as

ass.g 9= in behavioral code. In this regard dataflow code is
assignp =all a; very similar to gate-level code.

assignd =p || c;
endmodule

Continuous assignment statements: any change in
the RHS causes instantaneous update of the wire
\ on the LHS, unless there is a programmed delay.

Use stimulus module from behavioral code.

simpleGate.v

- A gate-level module does not contain procedures.

module aOrNotbOre(d, &, b, €); | statements in a gate-level module can be re-ordered

output d; without affecting the program as they simply
input a, b, c; describe a set of connections rather than a sequence
wire p, Q; pf acti_ons as in behavio_ral _code. Agat_e-levelmodule
IS equivalent to a combinational circuit.
not(q, b); .
or(p, a, q); Wire data type can have one of four values: 0, 1, x, z.
o Wires cannot store values — they are continuously
or(d, p, ¢); driven.
endmodule

Primitive gates. Verilog provides
\ several such, e.g., and, or, nand,
nor, not, buf, etc.

Use stimulus module from behavioral code.

4valuedLogic.v

module fourValues(a, b, c, d);
output a, b, ¢, d ;

Conflict or race
_ e condition.
assign a = 1; Remember this is

assign b = 0; / not a procedural
assign ¢ = a; } (i.e., sequential)

assign ¢ = b; block! These are 4-valued logic:
endmodule continuous assign- 0 - low
ments. 1 - high
module stimulus; X — unknown

Z — undriven wire

fourValues X(a, b, c, d); :
Now explain output!

initial
begin
#1 $display("a = %d b = %d, ¢ = %d, d = %d", a, b, c, d);
$finish;
end
endmodule

blockingVSnbal.v

module blockingVSnbal;

integer i, j, k, [;
initial : :
begin Blocking (procedural) assignment: the whole statement
410 =3 / must execute before control is released, as in traditional
o rogramming languages.
Hl1=1+1; Prog d ‘anguag
] =1+1;

#1 $display("i = %d, j = %d", i, j);

Non-blocking (procedural) assignment: all the RHSs for the
#1i=3; current time instant are evaluated (and stored transparently
Hli<=i+1; / in temporaries) first and, subsequently, the LHSs are updated
j<=i+1; at the end of the time instant.

#1 $display("i = %d, j = %d", i, j);

$finish;
end
endmodule

blockingVSnba2.v

module blockingVSnba2(clk);

input clk; +—__| Compile with clockGenerator.v.

clockGenerator cg(clk);
integer i, j;

initial
begin
I = 10;

An application of non-blocking assignments
to solve a race problem.

#50 $finish;
end

always @(posedge clk)
i=i+1; /i<=i+1;

always @(posedge clk)
j=i; <=1

With blocking assignments we get different output
depending on the order these two statements are
executed by the simulator, though they are both
supposed to execute “simultaneously” at posedge clk
- race problem.

Race problem is solved if the non-blocking
assignments (after the comments) are used instead
- output is unique.

always @(negedge clk)
$display("i = %d, j = %d", i, j);
endmodule

blockingVSnba2.v — Simulation Result

Ablockingty's
Ablocking'y'S
Abloc:
/bloc
Abloc

blockingYSnbazdca... |0

i blockingVSnba2.v — Simulation Result

begin
| = 10;
#50 $finish;
end

always @(posedge clk)
| =1+ 1;

always @(posedge clk)
)=

a'= 10:;
#50 $finish;
end

always @(posedge clk)
a<=at+ 1,

always @(posedge clk)
b <= a;

el el
AwWNPFRO
— e — e —

10, b
11, b
12, b
13, b
14, b

X
11
12
13
14

X
10
11
12
13

blockingVSnba3.v

The most important application of

module blockingVSnbas; _ _ non-blocking assignments is to
reg[7:0] dataBuf, dataCache, instrBuf, instrCache; model concurrency in hardware

systems at the behavioral level.

initial
begin
dataCache = 8'b11010011; Both loads from dataCache to dataBuf and
instrCache = 8'b10010010; instrCache to instrBuf happen concurrently
in the 20-21 clock cycle.
#20;

$display("Time = %d, dataBuf =26b, instrBuf = %b", $time, dataBuf, instrBuf);
dataBuf <= #1 dataCache; }

instrBuf <= #1 instrCache;

#1 $display("Time = %.d, dataBuf =%b, instrBuf = %b", $time, dataBuf, instrBuf);

$finish; Replace non-blocking with blocking

end assignments and observe.
endmodule

blockingVSnba3.v — Simulation Result

nonBlock

AblockingSnba3/dataB uf -t Data- 11010071
+ dblockingSnbad/dataCache Mo Drata- 11010071 |
n nckingtSnba3dinstrB uf Mo Data- 10070010
B /blockingySnba3dfinstiCache Mo Data- 10070070 |

gf T01a0id

110100711

10010070

Cursor 1
Curgor 2

